
Dept. of Computer Science and Engineering, Konkuk Univ.

A Review of
Formal Methods

200611499 이낙원
200611520 진경훈
200611521 최정명
200911411 이상규

1

Contents

• Introduction

• Definition and overview

• Specification Methods

• Life cycles and technologies

Dept. of Computer Science and Engineering, Konkuk Univ.
2

INTRODUCTION

• Better programs

• The best methods

• Revolutionary paradigm shift

• A highly controversial subject

Dept. of Computer Science and Engineering, Konkuk Univ.
3

Definition and overview of
Formal methods

• A broad view of formal methods includes all
applications of discrete mathematics to
software engineering problems. This
application usually involves modeling and
analysis where the models and analysis
procedures are derived from or defined by an
underlying mathematically precise foundation.
(Leveson 1990)

Dept. of Computer Science and Engineering, Konkuk Univ.
4

Definition and overview of
Formal methods

• First, formal methods involve the use of a
formal language.

– Then why formal methods involve a formal
language?

• Second, formal methods support formal
reasoning about formula in the language.

– For what?

Dept. of Computer Science and Engineering, Konkuk Univ.
5

Use of Formal methods

• Directly applicable during the requirements,
design, and coding phases

• Important consequences for testing and
maintenance

• The development and standardization of many
programming languages

Dept. of Computer Science and Engineering, Konkuk Univ.
6

What can be formally specified

• Precise and rigorous specifications

– Should describe what a system should do

– But not how it is done

– Aspects of a system other than functionality

• For example, formal methods are sometimes
applied in practice to ensure software safety and
security properties of computer programs.

Dept. of Computer Science and Engineering, Konkuk Univ.
7

What can be formally specified

• Example of the most well known formal methods

– Z (pronounced “Zed”)
– ML

– Communicating Sequential Processes (CSP)

– Vienna Development Method (VDM)

– Larch

Dept. of Computer Science and Engineering, Konkuk Univ.
8

What can be formally specified

• Z notation (pronounced “Zed notation”)

– Formal specification language used for describing
and modeling computing systems.

– Z is based on the standard mathematical notation
used in axiomatic set theory, lambda calculus, and
first-order predicate logic.

Dept. of Computer Science and Engineering, Konkuk Univ.
9

Reasoning about
a Formal Description

• Usable formal methods provide a variety
of techniques for reasoning about
specifications and drawing implications.

Dept. of Computer Science and Engineering, Konkuk Univ.
10

Reasoning about
a Formal Description

• Formal methods provide reasoning techniques
to explore these questions.

– Does a description imply a system should be in
several states simultaneously?

– Do all legal inputs that yield one and only one
output?

– What surprising results, perhaps unintended, can be
produced by a system?

Dept. of Computer Science and Engineering, Konkuk Univ.
11

Tools and Methodology

• The ultimate end product
– Not solely working system

– Specifications, Demonstrations that the program meets its
specification

• A proof is very hard to develop after the fact.
Consequently, proofs and programs should be
developed in parallel.

Dept. of Computer Science and Engineering, Konkuk Univ.
12

Tools and Methodology

• Formal methods have also inspired the
development of many tools.

– Programs to help maintain and automate proofs are
example of such tools.

• In some sense, no programmer can avoid
formal methods, for every programming
language is, by definition, a formal language.

Dept. of Computer Science and Engineering, Konkuk Univ.
13

Limitation of Formal methods

• Requirement problem

• Physical implementations problem

• Implementation Issues problem

Dept. of Computer Science and Engineering, Konkuk Univ.
14

The Requirement Problem

• “You cannot go from the informal to the
formal by formal means.”

• Formal methods can be used to verify a
system, but not to validate it.

– Verify vs. Validate

Dept. of Computer Science and Engineering, Konkuk Univ.
15

The Requirement Problem

• The three most important problems in
software development are:

– The thin spread of application domain knowledge

– Changes in and conflicts between requirements

– Communication and coordination problems

–Key Exeptional Designer!

Dept. of Computer Science and Engineering, Konkuk Univ.
16

The Requirement Problem

• The application knowledge of the exceptional
designer is not limited to one discipline.

Dept. of Computer Science and Engineering, Konkuk Univ.

Avionics
Electronic

countermeasures Navigation

Signal
processing

Flight
control

17

The Requirement Problem

• However, empirical evdence

– Contribution to the capturing requirement

– Fewer errors

• Still, formal methods can never replace deep
application knowledge on the par of the
requirements engineer.

Dept. of Computer Science and Engineering, Konkuk Univ.
18

Physical implementations

• Run on an idealized abstract machine, but not
when run on any physical machine.

– For instance, an abstract machine might be
assumed to have an infinite memory.

– A compiler may not correctly implement a language
as specified.

– Memory chips and integrated circuits may contain
bugs.

Dept. of Computer Science and Engineering, Konkuk Univ.
19

Physical implementations

• These limitations do not imply that formal
methods are pointless.

• Formal proofs explicitly isolate those locations
where an error may occur.

Dept. of Computer Science and Engineering, Konkuk Univ.
20

Implementation Issues

• The gaps between

– Users’ intentions & formal specifications

– Physical implementations & abstract proofs

Create inherent limitations.

Dept. of Computer Science and Engineering, Konkuk Univ.
21

Implementation Issues

• Formal methods are most well developed for
addressing issues of functionality, safety, and security,

but not of Scalability.

• Issue of scaling can be a deciding factor in the choice
of method.

Dept. of Computer Science and Engineering, Konkuk Univ.
22

Implementation Issues

• Alternative

– To select a small subset of components for formal
treatment, thus finessing the scalability issue.

– To develop formal specifications at the start of the
life cycle and then automatically derive the source
code for the system.

– To partially introduce formal methods by
introducing them throughout an organization or
project but allowing a variable level of formality.

Dept. of Computer Science and Engineering, Konkuk Univ.
23

Implementation Issues

• Training and education issues
– Many programmers have either not been exposed to the

needed mathematical background or do not use it in their
day-to-day practice.

– Old one need to be retrained or modified, and new one need
to be hired.

Dept. of Computer Science and Engineering, Konkuk Univ.
24

SPECIFICATION METHODS

• Users of formal specification techniques need to
understand the strengths and weaknesses of different
methods and languages before deciding on which to
adopt

• A method states what a specification must say.

• A language determines in detail how the concepts in
a specification can be expressed.

Dept. of Computer Science and Engineering, Konkuk Univ.
25

Semantic Domains

• A formal specification language contains an alphabet
of symbols and grammatical rules that define well-
formed formulae.

• A language can have several models, but most will
find some models more natural than others.

Dept. of Computer Science and Engineering, Konkuk Univ.
26

Semantic Domains

• The objects in the language’s semantic domain
that satisfy a given specification can be
nonunique.

– Because of this nonuniqueness, specification is at a
higher level of abstraction than the objects in the
semantic domain.

• These concepts can be defined more precisely
using mathematics.

Dept. of Computer Science and Engineering, Konkuk Univ.
27

Semantic Domains

• Specification language can be classified based
on their semantic domains. Three major classes
of semantic domains exist.

– Abstract data type (ADT) specification languages
• Used to describe algebras

– Process specification language
• Describe state sequences, event sequences etc.

– Programming languages
• Obvious example of languages with multiple models

Dept. of Computer Science and Engineering, Konkuk Univ.
28

Model-Oriented and
Property-Oriented Methods

• Model-oriented methods have been described
as constructive or operational.

• In a model-oriented method, a specification
describes a system directly by providing a
model of the system.

• In effect, a model-oriented specification is a
program written in a very high-level language.

Dept. of Computer Science and Engineering, Konkuk Univ.
29

Model-Oriented and
Property-Oriented Methods

• Property-oriented methods are described as
definitional or declarative.

• Property-oriented specification describes a
minimum set of conditions that a system must
satisfy.

• But the specification does not provide a
mechanical model showing how to determine
the output of the system from the inputs.

Dept. of Computer Science and Engineering, Konkuk Univ.
30

Model-Oriented and
Property-Oriented Methods

• Two classes of property-oriented methods exist.

– Algebraic & Axiomatic
• In algebraic methods, the properties defining a program

are equations in certain algebras.

• ADT are often specified by algebraic methods.

• Other types of axioms can be used in axiomatic methods.

Dept. of Computer Science and Engineering, Konkuk Univ.
31

Use of Specification Methods

• In general, formal methods provide for more
precise specifications.

– Misunderstandings and bugs can be discovered
earlier in the life cycle.

– Since the fault is detected, the cheaper it can be
removed, formal specification methods can
dramatically improve both productivity and quality.

Dept. of Computer Science and Engineering, Konkuk Univ.
32

Use of Specification Methods

• Formal specifications should not be presented
without a restatement of the specification in a
natural language.
– Very few sponsors of a software project will be inclined to

read a specification whose presentation is entirely in a formal
language.

Dept. of Computer Science and Engineering, Konkuk Univ.
33

LIFE CYCLES AND TECHNOLOGIES
WITH INTEGRATED FORMAL METHODS

• To get their full advantages in a cost-effective manner,
formal methods should be incorporated into a
software organization’s standard procedures.

• Two methods of integrating formal methods in
software processes can be distinguished.

– One with heavy use of automated tools

– One with nonmechanical, nonautomated proofs

Dept. of Computer Science and Engineering, Konkuk Univ.
34

Verification Systems and
Other Automated Tools

• An automated verification system provides a means for
the user to demonstrate the existence of a formal
proof of a software system.

• The usage of verification systems varies.
– Some allow the user of high level of control.

– The system is useful for bookkeeping.

– Verifiers often use decision procedures in restricted domains.
• Decision procedures show whether or not a proof exists without explicitly

constructing the proof.

Dept. of Computer Science and Engineering, Konkuk Univ.
35

Verification Systems and
Other Automated Tools

• Model checking
– One creates a state transition diagram as a model of a

specification.

– Model checking either establishes that the properties are true
for the state transition diagram model or provides a
counterexample.

Dept. of Computer Science and Engineering, Konkuk Univ.
36

The Cleeanroom as a Life Cycle with
Integrated Use of Formal methods

• The Cleanroom methodology integrates
nonmechanized formal methods into the life cycle.
– Cleanroom combines formal methods and structured

programming with SPC, the spiral life cycle and etc.

• Cleanroom fosters attitudes such as emphasizing
defect prevention over defect removal.

Dept. of Computer Science and Engineering, Konkuk Univ.
37

The Cleeanroom as a Life Cycle with
Integrated Use of Formal methods

• The design and coding phases of Cleanroom
development are distinctive.
– Analysts must develop proofs of correctness, along with

designs and code.

• Testing does play a very important role in Cleanroom.
– It serves to verify that reliability goals are attained.

Dept. of Computer Science and Engineering, Konkuk Univ.
38

CONCLUSIONS

• Formal methods can provide:
– More precise specifications

– Better internal communication

– An ability to verify designs before executing them during test

– Higher quality and productivity

• Even if formal methods are not integrated into an
organization’s process, they can still have positive
benefits.

Dept. of Computer Science and Engineering, Konkuk Univ.
39

CONCLUSIONS

• Technologies that are increasingly widespread today
draw on formal methods. Knowledge of formal
methods is needed to completely understand these
popular technologies and to use them most effectively.
– Rapid prototyping

– Object-oriented design

– Structured programming

– Formal inspections

Dept. of Computer Science and Engineering, Konkuk Univ.
40

